
Specification of the Fermilab
Hierarchical Configuration Language

Ryan Putz

Contents

1 Introduction 2
2 FHiCL Syntax 3
3 FHiCL Semantics 12
4 Features of Programming Language Bindings 14
5 General Requirements 15
6 Output Requirements 15
7 Glossary 15
Index 17

1

2 draft 3

1 Introduction

1.1 Purpose
This document provides the formal specification for the Fermilab Hierarchical Configura-
tion Language, FHiCL . This specification includes several aspects of FHiCL:

• FHiCL Syntax

• FHiCL Semantics

• Canonical Value Representations

FHiCL is a customized language created for the storage of scientific parameter sets in a
medium that can be easily understood and processed.

1.2 Rationale
FHiCL was developed in order to produce a standard configuration language for the
storage, communication, and manipulation of scientific parameter sets.
The existence of a standard configuration language would allow for the creation of
programming language bindings that can read and process valid FHiCL documents,
returning a parameter set to the user.

1.3 Scope of This Facility
This project will include the development of a grammar specification for FHiCL (I.E.
this document), creation of a basline parser (using Yacc and Bison), and the creation
of various programming language bindings which shall read in FHiCL documents and
create a parameter set.

Specification of the FHiCL 3

2 FHiCL Syntax

A baseline parser for FHiCL was constructed using Bison and Flex. Bison is a general
purpose parser generator that converts a grammar description into a C program to parse
that grammar.
Flex is a lexical analyzer to process parsed tokens from the bison-generated C program.
The FHiCL syntax is defined by the following Bison grammar:

\include{"bnf.y"}

In this grammar, all uppercase names denote tokens. These tokens are defined by the
following Flex specification:

\include{"bnf.l"}

2.1 Low-Level Entities
Note: For all rules in this section, whitespace is not allowed between tokens.

2.1.1 Number

A number in FHiCL is composed of several subtypes:

• Simple

• Complex

• Hexadecimal

• Binary

• Nil

• Infinity

2.1.1.1 Simple

A simple number is either an integer or a floating point number.
EBNF:

float: [num]*[.][num]*
integer: [1-9ˆ.][0-9ˆ.]*
simple: float | integer

2.1.1.2 Complex

A complex number is a tuple of simple numbers.
EBNF:

complex: "(" simple "," simple ")"

4 draft 3

2.1.1.3 Hexadecimal

A hexadecimal number is composed of two parts:

1. A prefix

2. A numeric

Where the numeric part is in base 16.
The prefix for hexadecimal numbers is 0x or 0X.
EBNF:

hex: (0x|0X)[0-9a-fA-F]+

2.1.1.4 Binary

A binary number is similar to a hexadecimal number except that the numeric portion of
the number is in base 2. Also, the prefix for binary numbers is emph0b as opposed to 0x
for hexadecimal numbers.
EBNF:

bin: (0b|0B)[01]+

2.1.1.5 Nil

Nil is FHiCL’s implementation of null. Valid forms for nil are as follows:

1. nil

2. Nil

3. NIL

2.1.1.6 Infinity

Infinity, in FHiCL, is simply a placeholder as the actual value will be filled in by whichever
language binding is creating the parameter set.

2.1.2 Reserved and Special Characters

A char is one of:

1. any ASCII character except for:

• double-quote (”)

• reverse solidus (\)
• control characters

2. (printable characters)

3. one of a number escape sequences, noted below:

Specification of the FHiCL 5

• escaped double-quote (\”)
• reverse solidus (\\)
• solidus (\/)

There are a number of reserved char values:

• colon (:)

• double colon (::)

• left/right brace ({})

• left/right bracket ([])

• left/right paren (())

• at sign (@)

2.1.3 Atom

The most basic unit of FHiCL is the atom, which is defined as:

NIL: "nil" | nil | Nil | "Nil" | NIL | "NIL"
BOOL_TOK: true | "true" | false | "false"
REF: (@local:: | @db::) string
atom: number | string | NIL | BOOL_TOK | REF

EBNF:

atom => char | string
string => alpha[alnum]* | digit[alnum]*

Notes:

• The canonical representation of an atom is a sequence of printable characters.

• Every atom can be requested in canonical string form.

• There are three valid syntaxes for a string in FHiCL:

1. Alpha Start String - No quotes, string values must be simple and contain no
white space.

2. Single-Quote - Surrounded by single quotes; all content is quoted verbatim.

3. Double-Quote - Surrounded by double quotes; content may contain special
escaped characters.

• The two special characters that are allowed in all string forms are newline and tab.

2.2 Mid-level Entities
Note: For all rules in this section, whitespace is allowed only where specified by the

whitespace token ws.

6 draft 3

2.2.1 Comments

FHiCL comments are denoted by the # symbol, or by \\ which are placed at the beginning
of the comment. Comments may or may not be at the beginning on a line, however,
once comment notation is used, the rest of the line will be treated as a comment. FHiCL
comments are single-line, and should be ignored by parsers.

2.2.2 Names

A name is similar to a key in a key-value pair of a C++ mapping, or a Python dictionary.
In essence, a FHiCL name is an unquoted string that may contain only alphas and/or
underscores.
EBNF:

name: [a-zA-Z_]*

Example:

x: 1.0

In this case, ”x” is a name.

2.2.3 Hierarchical Names

A hierarchical name, or hname is a compound name using the dot index or bracket index
to denote levels of scope.
Dot index is where a single period (”.”) is used to denote access to a container’s elements.
Bracket index is where a pair of brackets (”

”) are used to denote access to a sequence’s elements. Between the brackets is where an
index must be given as to which element in the sequence you wish to access.
Example:

cont1:{x: 1.0 y: 2.0 z: 3.0}
cont1.x : 5
OR
cont2:[1, 2, 3}
cont2[0] : 1

EBNF:

LBRACKET: "["
RBRACKET: "]"
BRACKET_INDEX: LBRACKET number RBRACKET
DOT_INDEX: [.]
hname => atom (DOT_INDEX|BRACKET_INDEX) atom

Specification of the FHiCL 7

2.2.4 Value

An element of type value is either a single atom, a collection of atoms, or a collection of
associations. Example:

a : 1.0
#Where "1.0" is the value of the atom named "a"

EBNF:

value => table|sequence|atom

Note: see definitions for table and sequence in the next section

2.3 High-Level Entities
Note: For all the rules in this section, whitespace is allowed between any two tokens,

and is not significant.

2.3.1 Definition

An element of type definition is used to associate a value to a name. The syntax of a
definition is:

a : 1.0

EBNF:

definition => (name|hname) COLON value

2.3.2 Table

Elements of type table are space- or line-separated collections of definitions and are
denoted by (possibly empty) braces:

tab1:{a: 1.0 b: 2.0 c: 3.0}

EBNF:

table => LBRACE table_body RBRACE
table_body => | table_items
table_items => table_item | [table_item + "," + table_items]
table_item => definition

Notes:

• Tables may contain comments IF AND ONLY IF the table elements are line-
separated.

8 draft 3

• Comments cannot exist in between space-separated table elements.

• two tables are the same when their hash code is the same (the byte sequences fed
into the hash must be identical).

2.3.3 Sequence

Elements of type sequence are comma-separated collections of values and are denoted
by (possibly empty) brackets:

seq1:[a, b, c, d]

EBNF:

sequence => LBRACKET sequence_body RBRACKET
sequence_body => | sequence_items
sequence_items => sequence_item | [sequence_item + "," + sequence_items]
sequence_item => value

NOTE: Sequences CANNOT contain comments.

Specification of the FHiCL 9

2.3.4 Document

The document is the highest-level construct in FHiCL. Any implementation of a FHiCL
parser processes a document as if it were a single string.
A file with the suffix ”.fcl” is considered to be a FHiCL document.
A document consists of exactly one, possibly empty, table such as:

#Document start
main:{

a: 1.0
b: "hi"
c: dog
}

#Document end

EBNF:

document => table

Documents may have one or more prologs at the top of the document. The only items
that may occur before a prolog are comments and other prologs.

2.3.5 Override

An element of type override is used to associate an existing element with a new value, or
to create a new element in a table or sequence. The syntax for an override:

a: 1.0 #Declaration and initialization
a : 5.0 #Override (Assignment)

OR

tab1:{ a:1 b:2 c:3 }
tab1.d : 5 #Creating a new element ’d’ in table ’tab1’

OR

seq1:[1, 2, 3]
seq1[3] : 5 #Creating a new element ’5’ in sequence ’seq1’

EBNF:

override => (name|hname|DOTINDEX|BRACKETINDEX) COLON value

Note: the name for an override is an hname.

10 draft 3

2.3.6 Include

In order to import values from external documents into a FHiCL document, an include
statement is used to tell which file’s values should be inserted into the document.
A FHiCL #include statement differs from the C++ #include statement in that the FHiCL
#include acts more as a union of two documents , as opposed to just allowing one file to
access another.
The include statement syntax is as follows: Example:

//This is a valid include statement:
#include "filename.ext"
#include "../test1.fcl"
#include "tests/pass/test2.fcl"

//These are invalid include statements:
#include filename.ext
//include "filename.ext"
#include"filename.ext"
include "filename.ext"
#includefilename.ext

Where the quoted string ”filename.ext” represents the file name and file extension of the
included file.

2.3.6.1 Default Directory

The default directory from which all searches for included files are performed is the same
directory from which the FHiCL parser is run.
Therefore, suppose we have the following directory structure:

/fhicl
|---parser
|---/testFiles

|----test1.fcl
|----test2.fcl

Assuming that parser is the parsing program for FHiCL and that test1.fcl, and test2.fcl
are FHiCL documents. If the file test1.fcl has the following contents:

a:1
b:2
c:3

And the file test2.fcl having the following contents:

a:0
d:4

Specification of the FHiCL 11

In order to include the file test2.fcl in emphtest1.fcl, The #include statement would look
like this:

#include "testFiles/test2.fcl"

Since the default directory from which the search for test2.fcl is begun is /fhicl, which is
where the program parser is located.
Now if the directory structure looked like this:

/fhicl
|---parser
|---test1.fcl
|---test2.fcl

Then the #include statement would look like this:

#include "test2.fcl"

NOTES:

• There is exactly one space between ’#include’ and ’filename.ext’.

• Also, the filname must be enclosed in double quotes.

• Any deviation from the include statement syntax will result in a parse failure.

• Circular or repetive includes are not supported and should be checked for by the
parser.

• Included values can be overridden and can override values that are within the same
scope and share the same name.

• Includes must be on their own line, otherwise they will be treated as comments

2.3.7 Prolog

A Prolog is a construct which exist at the start of a FHiCL document. A Prolog’s boundaries
are denoted by the use of BEGIN PROLOG and END PROLOG. All data within a Prolog
may not be modified outside of the Prolog.
Below is an example of a valid FHiCL Prolog:

BEGIN_PROLOG
x :5
y :6
END_PROLOG

12 draft 3

2.3.7.1 Reference

In order to associate a name with the value of a pre-existing definition the use of the
FHiCL reference notation is required:

@local::
OR
@db::

Example:

x : 5
y : @local::x
z : @db::x

References point to the most-recently encountered variable with a matching name.
Reference names must be extremely specific in which value they are pointing to.
For example, if we have a table tab1 such as:

tab1:{ a:1 b:2 c:3 }

and we want to set an outside variable to the value of a in tab1. The reference for this
would look like:

tab1:{ a:1 b:2 c:3 }
x : @local::tab1.a

And this would give us a resulting parameter set of x : 1
In situations where an element in a prolog shares a name with an element in the
document body, any references made to a variable of the same name will result in a
reference look-up to the element in the document body.

3 FHiCL Semantics

3.1 High-level Result of a Successful Parse
The result of parsing a document is a single table. The definitions and overrides appearing
before the top-level table are intended to allow the user to supply values to be substituted
into elements in the table. The definitions and overrides appearing after the top-level
table are intended to allow the user to replace values in that table.

3.2 Representation of Atoms
In the parse results, all atoms except for nil and reference are represented as character
strings. The atom nil is represented by a value specified by the binding for a given
programming language. The resolution of references is described in section Resolution of
References below.
Each language binding provides its own mechanism for turning atoms of type inte-
ger, real and complex from their string representation into the appropriate numerical
representation.

Specification of the FHiCL 13

3.3 Canonical Forms
3.3.1 Canonical Booleans

Boolean values, whether entered with quotes or not, will be stored in the following form
(EBNF):

bareT: true
quoteT: "true"
bareF: false
quoteF: "false"
bool: (["]bareT | bareF["]) | (quoteT | quoteF)

3.3.2 Canonical Numbers

Numeric values in FHiCL each have their own canonical form based on their type.

3.3.2.1 Integer

Integers in FHiCL may have leading zeros, however the canonical form will strip any
leading zeros from the integer. Also, if an integer is outside of the small range (which is
1,000,000), its canonical form will be a floating point number using scientific notation.

3.3.2.2 Floating Point

Floating point numbers in FHiCL may also have leading zeros, with the canonical form
stripping out all but one leading zero. Also, if a floating point number can be represented
as an integer and is within the small range, then the floating point number will be
canonically stored as an integer.

3.3.2.3 Hexadecimal and Binary

The numeric portions of hexadecimal and binary numbers will have the leading zeros
stripped. The prefix used to identify both types of numbers do not count as a leading
zero. The canonical form of hexadecimal and binary numbers in FHiCL is as follows:
EBNF:

hex: (0x|0X)[1-9a-fA-F][0-9a-fA-F]*
bin: (0b|0B)[1][10]*

3.3.2.4 General Notes

Negative(-) signage is supported in FHiCL and is kept in the canonical form. However,
positive(+) signage, while it is supported, is stripped when in canonical form. So, −infinity
in canonical form is still −infinity. However, emph+infinity becomes just infinity in
canonical form.

14 draft 3

3.3.3 Canonical Strings

Canonical form for all strings is a string representation of the characters.
Notes:

• Stirng concatenation operatiosn are permitted, but only for quoted string values.

• No unquoted white space is permitted.

• Quotes for string values can be omitted if the string value is considered to be
’simple’.

• A ’simple’ string is made up of only underscores and alphabetic characters.

3.4 Resolution of Referencess
Atoms of type reference are replaced by the value indicated by the hname part of the
reference, where the environment in which the hname is evaluated is determined by the
db or local at the end of the reference.
The presence of local indicates that the scope in which the hname is to be evaluated is
the previously-read document text. The presence of db indicates that the scope in which
the hname is evaluated is the single database to which the parser has access.
If the parser has no access to a database, and a reference which ends in db is encountered,
a parse failure results. If, in the appropriate scope, the hname in a reference does not
resolve to any value, a parse failure results.

3.5 Issues with Leading Zeros and Canonical Representation
As a rule, leading zeros are not allowed in any situation where a number may be
misinterpreted as a non-base-10 number with the inclusion of (a) leading zero(s).
This rule only applies to numbers that may be represented as a base-10 integer. Floating
point, binary, hexidecimal, and octal numbers may have leading zeros. Exponential
numbers may have leading zeros, but if they are representable as a base-10 integer, their
canonical form will be in integer form.
The rationale for this rule is that in some programming languages, a leading zero is used
to denote a non-base-10 number, I.E. ”0x” is used to denote a hexidecimal number.

4 Features of Programming Language Bindings

4.1 Processing
Each programming language binding for FHiCL must be able to produce a parameter set
in the standard FHiCL syntax.

4.2 Output
Each language binding shall return a native container construct closest to that of the
FHiCL table. The returned container shall contain a valid FHiCL parameter set.

Specification of the FHiCL 15

4.3 Storage
Storage of parsed results from each program language binding shall be in th standard
FHiCL syntax as defined above. FHiCL documents are to be stored in files with the suffix
”.fcl”.

5 General Requirements

5.1 Additional Requirements for Dynamically Typed Languages
Tables and sequences should be represented by a built-in type of the programming
language.
If the target programming language has a standard JSON library, we want to make
sure that our constructs can be translated to JSON format and back without use of any
FHiCL-specific library.
It is important that code that uses the representation of a table not need any FHiCL-
specific code.

6 Output Requirements

6.1 Output Intended for Human Reading
”Pretty Printers” must make use of newlines and indentation throughout parameter
set output. The use of newlines and indentation between table elements, individual
associations, include statements and comments is required.

6.2 Output Intended for Machine Reading
Output for use by machine(s) is to be machine parsable, have an ASCII dump facility
and platform neutral. Machine output is to be exclude unnecessary elements such as
comments.

7 Glossary

7.1 Alphas
An alpha is any of the ASCII characters a-z or A-Z.

7.2 Digits
A digit is any of the ASCII characters 0-9.

7.3 White Space
A ws is one of the three whitespace characters: space/tab, newline, and line return.

7.4 Alphanumerics
An alnum is any of the ASCII characters a-z, A-Z, 0-9 or other printable characters

Index

.fcl, 9

atom, 5, 12

BEGIN PROLOG, 11
bin, canonical, 13
binary, 3
boolean, canonical, 13
bracket index, 6

canonical form, 13
char, 4
comments, 5
complex, 3

db, 14
definition, 7, 12
document, 9, 10, 12, 14
dot index, 6

END PROLOG, 11

false, canonical, 13
FHiCL, 2, 10
FHiCL document, see document
floating point, canonical, 13

hex, canonical, 13
hexadecimal, 3
Hierarchical Names, 6
hname, 9, 14
hnames, 6

include, 10, 11
infinity, 3
integer, canonical, 13

local, 14

name, 9
names, 6
nil, 3, 12
number, 3

override, 9, 12

parser, 10, 11
printable, 4
prolog, 11

reference, 11, 12, 14

sequence, 8, 9
simple, 3
string, 5
string, canonical, 13

table, 7, 9, 12
true, canonical, 13

value, 6, 14

17

	1 Introduction
	2 FHiCL Syntax
	3 FHiCL Semantics
	4 Features of Programming Language Bindings
	5 General Requirements
	6 Output Requirements
	7 Glossary
	Index

